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Prefae

The research reported in this document deals with a multiple

state, staged failure phenomenon with state specific eovariates char-

acteristic of the states. Different types of censoring was taken into

consideration. The classical maxim= likelihood estimation is compared

with Cox's partial likelihood estimation for efficiency, since maxi-

m likelihood estiation of covariate effects depends on the baseline

failure rate, while partial likelihood estimation does not. Results of

analsis as well as simulation are presented.

Part of this work was supported at the University of

Southern California by a grant from the Air Force Office of Scientific

Research, Grant AFOSR-81-0162.
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ftltiule State Cox Model. Analysis of Survival

The vast majority of reliability analyses for components ad/or

systems assme that the equipment under consideration is In either one of

two states: Functioning or Faled. In many situations one can measure and

distinguish between various "levels of performance" for both the system

and Its components. Current literature Is largely devoted to the proba-

bilistic aspects of both static and dynamic naltistate system.. Parallel

Investigations in clinical data analysis deal with reliability under the

analogous concept of survival analysis.

In this section a model for the analysis of survival data of a staged

failure phenomena with competing risks is considered. The model is a mul-

tiple state extension of the proportional hazard rate odel of Cox (1972).

It uses the theory of Markov processes as applied to staged failure phenom-

am described, for example, in Chiang (19M). Cox's method of partial like-

lihood was extended to obtain the estimates of covariate effects. ximuzm

likelihood estimation of the intensity matrix Is developed. Using the

results of Aalen (1975), the consistency of the estimator for the integrated

intensity matrix is established. The asymptotic variance and the weak con-

vergence to normality of the estimator is obtained. An Illustration apply-

Ing the model to a multiple transition situation Is given.

I. introduction

In the follovlng, we consider the stochastic modeling of staged

ftilwe phenomena using the theory of Narkav processes. Complicating

the statistical pletue Is a set of observed covarlates on each Item

sampled. The motivatln far this work em from a desire to solve



certain problems that arise in the study of cancer data. Typically,

for each patient in a cancer study, there exist a set of measured

front end variables (e.g. initial white blood cell count, age, sex,

etc.) as well as a set of periodically updated medical observations

on each patient. The problem is to properly account for the effect

of these observed covariates on the transition probabilities between

various stages of the disease. This situation is most often modeled

using just two states: disease and death. Cox (1972) considers

this situation and uses the parametric model

A i W- X(t) exp ([s '(t)] , (1.1)

where XT(t) is the failure rate (hazard function) for the ith patient,

a (t) is the ith patient's observed set of covariates, and B' is the

transpose of the vector representing the effect of the covariates.

The function 0 (t) is a reference failure rate and may be considered

as the failure rate of a patient with covariate vector zi(t) = 0.

If covariates are measured as deviations from a mean, then A (0) is

an "average" failure rate. Ina study where the determination of the

effect of covariates is of paramount importance, then the method of

partial likelihood (Cox 1975) is a very useful procedure for estima-

ting the vector $ in that it results in a formulation independent of

the unknown X W.

In this paper, we consider the multiple transition extension of

a parametric covariate model in an analysis of life data (e.g. the

Cox Model) using the theory of Markov processes applied to staged

failure phenomena as described for example in Chiang (1968). The
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failed states (e.g. death) in such a model will of course be absorb-

ing states. Competing risk models can be handled by allowing for

more than one death state where each death state corresponds to a

different cause of death. For example, in the illustration discuss-

ed in Section S, patients undergoing porta-caval shunt surgery to

correct hepatic bleeding can at any particular time, either reside

in one of two treatment states, (alive-free of hepatitis, or alive-

having had hepatitis) or in one of three absorbing states (death from

bleeding, death from other cause, or withdrawn-lost to follow-up).

2. STAGED FAILURE PHENOMENA: MARKOV PROCESSES

We consider the situation where each patient in a population

must exist in one of several states. The states will be comprised

of transient states (i.e. illness states such as various stages of a

disease, various complications, etc.) and absorbing states (i.e.

death states). Complicating the analysis of many clinical studies

is the censored state, which here may be treated as another absorbing

state. The Markov assumption is that the probability distribution

over future states a patient might be in, is completely determined

by his current state. Specifically it does not depend upon how the

patient arrived at his current state or how long he has been there.

(This statement can be modified if the state space is expanded to in-

clude these properties).

Let A(O) denote the set of mutually exclusive states i, ic A(a)

In our applications the cardinality of A(a) will be quite small

(five for the liver patient example). The probability of being in

3



state j at time t given that one was in state i at time T,r S t is

denoted by the function Pij(,t). The fact that a patient must occupy

some state for each time t and that the states are mutually exclusive

is characterized by the relations

Pid (Tt) - I for all T<_t, and for all i, (2.la)

and Pij(t,t) - Sip (2.1b)

where 6ij is the Kronecker delta.

The intensity matrix v. (t) is given by

Vat.. - Pj(Tpt) (2.2)
t-T.

From (2.la), the intensity matrix satisfies

vij(t) = 0 for all i, t. (2.3)

The intensity has the interpretation of being proportional to the

probability of transition from state i to state j at time t.

Specifically,

Pij (tt+h) - 6ij + vij (tMA + O(A), (2.4)

where o(A) is such that

i1. o(A)/ - 0 (2.5)

Letting P(ct) be the matrix (Pij (,t)) and V(t) be the matrix

(v ij(t)), we have the following well known relationships between P

and V.

4



I. Chapman-Kolmogrov forward differential equation:

a(Tt) P(1t) V(t); rst, (2.6)
at

with initial condition P(r.r) - I. (2.7)

* -II. Chapman-Kolmogrov backward differential equation:

P(=,t) -V(.t) P(T,t); 'r~t (2.8)

with "initial condition,, P(tot) - I. (2.9)

The products PV in (2.6) and VP in (2.8) are the usual matrix inner

products. The integral equation form of (2.7) to (2.9) is

P(T,t) = I + ft P('r) dB (T, 8) (2.10)
T

where B(T,t) - jt V(s) ds. (2.11)
T

For a further discussion of the development of (2.6) through (2.9) see

Chiang (1968), pp. 116-120.

In the usual application of the above, the intensity matrix

(v.i.(t)) is assumed to be almost everywhere continuous so that equa-

tions (2.6) and (2.8) involve no irregularities. It will be seen
later, however, that useful results are obtainable if we let vij(t)

have the form

2.( aij3 d(t-EjL),  (2.12)

where 6( ) is the Dirac delta function and the 4ijL are isolated

points on the real line. (In particular, this is the natural "non

parametric parameterization" of A (t) in (1.1). See Cox (1972)).0

! •



Equation (2.12) says that ij transitions are only allowed to occur

at the isolated points ij ,

Computations are facilitated by ordering the &jt. for all iji.

Let the ordered CjL be relabeled Uk with <V 2< ... < Um"

Let P(Vu uk be the probability transition matrix for the times

Uk " Cij£a Uk - Uk - E with o<E<uk - Uk-1" It can be shown that

P(u-,u,) is the identity matrix except for the (ij)th off diagonal

element and the ith diagonal element which are given by

P Ij(1k,1k) - 1 -exp (-a.j£), (2.12a)

and P ii (In ik) - exp (-a t), (2.12b)

respectively. The Chapman-Kolmogrov equations imply for,

- <k1 <k2+1 "< k 2 S2+2,

k2

that P(t 2 1 t 2 ) TVP(Uluk). (2.13)k-k 2

The next section discusses the parametric estimation of the co-

variate effects. The following section discusses the nonparametric

estimation of the transition probabilities themselves given knowledge

of the covariate effects.

3. COVARIATE PARAMETERIZATION AND LIKELIHOOD ESTIMATION

From (2.7) or (2.8), it is seen that the transition probability

matrix P is completely determined by the intensity matrix V. The

parameterization of the covariate effect is thus facilitated through

6



a parameterization of V. Following (1.1), th' Cox model parameteri-

zation for the pth patient for a transition from state i to state j

is taken as (t) exp [m' t)], i+j, (3.1)

where aii is a vector of length N, the number of covariates in the

vector a p(). Note the constraint in (3.1) that i not equal j. For
PP

the case i=j, the parameterization of ij (t) follows from (2.3).

That is, (P (t) W= - (t;a. )" (3.2)

j+i

Likelihood estimation in both the case in which the vi. (t) are

parameterized and the case in which they are left arbitrary is des-

cribed in Fertig, Murthy, et al (1979). Here, we only consider the

latter situation.

Let W P(t) be the right continuous state function for the pth

patient. We observe Wp () on [0,T p] . Here we take T to be a non-

random study time established apriori for the pth patient.

If the patient leaves the study because of death or is censored

unexpectedly, he will be observed in that death or censored state

until T . This approach explicitly takes into account a censored
p

state that may be entered only randomly. Presumably, the transition

probabilities of interest are those that would exist in the hypothe-

tical situation of no censoring. Estimation of these probabilities

is the thrust of the Kaplan-Meier estimator in the three state problem

(life-death-censored). Fleming (1978) describes a multiple state ex-

tension to the X-M estimator that can be used in the current situation.

7



The state functions Wp (T) are each seen to be step functions

on (o, ] with a finite number of jumps.

Cox's method of partial likelihood will be used to estimate the

Qi. in (3.1). In this situation, one may specify as the conditioning

variates (S(j-),Ixi'j)), in Cox's:notation, as respectively the risk

set at each transition time (defined below) and the information that

a specific transition occurred. With this approach we need to record:

(1) Ordered event times: t2<... <tM. (2) Individuals undergoing

transition: i1 ,...,i. (3) State being left: x1,...,xm. (4) State

being entered: yl,...,y m . (5) "Risk" sets: R (t 1 ), ...,R X M (tm ). The

sets RX (t) for arbitrary t are defined by

R Xj(t) = I 1 P(- = X

Each R .(t) contains as members all patients who are at "risk" of
3

leaving state x..

Cox's partial likelihood is then

M

L =7fexp ('X zi)/ exp (X z k ) . (3.3)
j=1 j Yi j kcRx(tj ) (33)

The jth factor in the partial likelihood in a sense measures the

likelihood that it is individual i. who undergoes the transition

X.j-yj at time tj given that some individual in R.(t.) must undergo

this transition. (This likelihood is written for the case in which

there are no ties).

A useful feature of (3.3) is that it can be factored into in-

dependent expressions for each observed transition x+y. Thus, the

, -8



estimation of ay for given (x,y) can be performed independently of

the estimation of a. y for x+x' or y=y'. This factorization also

holds for the information matrix based on (3.3). Specifically we

have, for the qth component of a

n L I [Z'(q)_ I zk (q)exp W zk exp W Z
xyq t" T j kcRX (t xy kcR x * (t ( y Bk

3 a (3.4)

where T Y I x- x and y. = y

For specified x,y the expression (3.4) for all q comprise the usual

set of likelihood equations for estimating the q dimensional parameter

vector of the Cox model when only two states x and y (besides the

censoring state) are possible.

It can be seen from (3.4) that all off diagonal terms of the in-

formation matrix involving different transition states will be zero.

Thus, the information matrix will be block diagonal with the (x,y)

block given by
a2 1n L Z(p)Z(q)

1 pq am (L zm (q)k k x k.z

/ I exp (a. Zk) (z (p ) exp (Wxy Ba)lKCR (t .) 10k kcR X(t. P  yk)

x j 3 i 22

I L k .xp (a, z a) W z (3.S)
' k kcR (t 6) k

Of course, we only need consider those vectors axy and corres-

ponding I pq for those transitions of interest. These ideas will be
xY

9
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made clearer in the next section.

Estimation of the transition probabilities require an estimation

procedure for the v.°) (t) for each j of interest Kaplan and

Meier (1958) provide the nonparametric estimate in the three state

problem with no covariates. Fleming (1978) gives the procedure for

the multi-state case. Cox (1972) provides an adaptation of the

Kaplan-Meier estimate when covariates are present. The estimator

proposed here is the simple extension of the above procedures to the

case where covariates exist in a multi-state environment. It is

convenient to obtain the estimator as a maximum likelihood estimator

in the space of all functions whose centers form a set with no cluster

point. This procedure provides an estimator with certain intuitively

nice properties. Specifically, the observed conditional frequencies

of the sample will match those of the estimator's. Moreover, it re-

duces to the Kaplan-Meier estimate when there are only three states.

It is recognized that the fact that the estimator is maximum likeli-

hood may provide no advantage since we will be treating a case where

the number of parameters and the number of patients on study grow

at the same rate. Even though the estimation procedure seems

to focus on the intensity matrix, the transition probabilities are of

primary interest. This is fortunate since the presentation of a

Dirac delta function as an estimate of intensity in its own right

would be quite unsatisfactory in most situations. However, the transi-

tion probabilities essentially involve integrating over the estimated

intensities and therefore, a great deal of smoothing is effected.

This corresponds to the familiar case of deriving the empirical

10
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distribution function as a maximum likelihood estimator. Its den-

sity is of course composed of delta functions.

With the above considerations in mind let us write the intensity

for the pth patient as

vi (t;z p ) - aij 6(t-Eij , ) exp (a. , cm. P C{jfrO 3.6)
efor i~j

where A.. is the set of indices, I, for which a transition is possible.

The set iV' Aii which forms the set of centers of the Dirac delta
1.+j i

functions, is assumed to have no cluster point. For a given clini-

cal trial we can only consider the E ij which are less than m~x T,.

Thus we may take i A as a finite set.
i+i ii

The data that are observable with model (3.6) are given in the

following table:

Table I: Observable Data with Model (3.6)

Event Times: E ij1J ij2"' Eijn

Risk Sets: Ri (ij))a... , Ri(Eijn )

Transition Sets: Sij(Eij),... , Sij(ijn )

The above table is constructed for each i and j such that i+j. The

risk set Ri(t) is the set of all patients in state i at time t.

The transition set Sij(t) is the set of all patients that undergo an

iej transition at time t. Either or both of these sets may be empty

at any t. Thus if no patient undergoes a transition from ioj at

t Mi- i say, then #[Sij (ijL) ] - 0. As in (2.12b) the probability

that a patient in R (Eij9 ) survives the i j transition may be written

11
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as Pi ( l" ijL' ap) - exp [-ai:3 exp (0 X) (3.7)

The probability of a transition is one minus this quality. With

(3.7) it is simple to write the likelihood of the data in Table 1

asn.
L -T (1-,xp aip )1

1.,3i~j L-2 pESij (ij )

irexp - )
PcRi(Eiji) - S ij (Eij i)  3.8)

where ai - aj exp (a X) (3.9)

We will proceed with estimation of aij, in the case that the

aij vectors are known. The partial likelihood estimates of these

vectors may be used since these estimates were derived independently

of the aijt .

To estimate the aiji, we must maximize (3.8). If Ri(Eiji ) is

empty, then the corresponding aijL cannot be estimated. By conven-

tion we take it to be zero. If Ri(Eij, ) is non-empty but $ij(Eij.)

is, we see from (3.8) that the maximum occurs for a - 0. Thus,

we need consider only those times Eiji for which events actually

occurred. In order to emphasize this fact we relabel the Eiji as

tj and consider them "event" times. Since we are estimating in-

tensities but are primarily interested in transition probabilities,

it is clear from the decoupled nature of the log of (3.8) that those

transitions that are not going to be included in the final state

12
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space (e.g. transitions into a censored state) may be ignored.

We are now reduced to the case where for each t ijv.#(Sii (tij))>2

and Ri(tijt) is non-empty. Setting the derivative of the log of

(3.8) with respect to a.._ to zero, we have

*xp (0:.X ) exp (-&i . exp W.

PcS i (t i) 1 - exp (-aijo exp (W P ap))

pcI(~ . -exp (a'. ) for all i+j, and L. (3.10)pcR i(t iji) S $i ( tiji )  'L P

In the case of "ties" at tiji , equation (3.10) may be solved itera-

tively for a it. In the important case of no ties, we have the follow-

ing easily solved relation for aji:

exp (-akij, exp (Ot. )ZiPijt

- 1 - exp (i' . xp (at' 2) (3.11)
2- ijk PCR (t. ) 2-e P

where Pijt is that patient in S i(t ij).

It can be seen from (3.11) that in the case of no covariate

effects (aij - O),we have

232

exp (-ai6 £) - 1 - (3.12)

where Nij t is the number of patients in Ri(t ii .). Expression (3.12)

leads to the usual Kaplan-Meier estimate of the survival function

in the three-state no covariate case. The estimator given in (3.11)

is identical to that proposed by Kalbfleisch and Prentice (1973) in

13



the three state problem (life-death-censored). They develop their

estimator by considering the grouping of continuous time to failure

data.

From (3.11), we see that a £d is a function of the covariates

of the patients in the risk set Ri(tij). As mentioned earlier, the

estimates a..£ will in practice be found using the partial likelihood
A

estimates aiji of the aij vectors. Having estimated the ai 's and

the v .0 .', we may write an estimate of the intensity matrix for a

hypothetical person with covariate vector z as

S(;;) .i (t;a) exp i+j

j i
3 2.1

Because each v.(0) is a sum of delta functions, we havezj 2-t 2

P(Tt;z) = 9A Ik) (3.13)

where as in section 2 the Pk are the ordering of the tij, such that

_'c- < U<' +l<...<k < <
Pki-1 2 1 < <k <U 2 2+1

and fort 'j-k P(Vk2k k ;' ) is the identity matrix except for the

ith row which is given by

exp (-aijj exp aj z)), I-i

,( I ya IjY;X) - l-exp (-aij exp (SRO a)), t-

0, otherwise (3.14)

These ideas are implemented in section S with an example. The

14



consistency, asymptotic variance and weak convergence of the in-

tegrated intensity matrix estimator

^ -NF-M ft
B.. (tA,) 'd

are given in the next section.

4. CONSISTENCY OF THE INTEGRATED INTENSITY MATRIX ESTIMATOR

The notation used in this section is defined in Appendix A.

The (ij) element of the integrated intensity matrix is defined by

B. (t,&,z) - jt V .(t Wa) dt' (4.1)

From Section 2 the maximum likelihood estimator of (4.1) is

given by

F-M itAz ft (o) F-M.B.. A = Ij . .z)h. . dt.
1 hijr hijr

A~~~t. h-) i.
A< t jr <.t ni tijrhij t ijr

for n. • 2
(4.2)

-0 for nitij r < 2

Aalen (1975) presents an estimator for B.. of the form

.(t,. -,J (t ) h. i. dt'

h..

- %a (4.3)
A < ijr ft ni ijrhiJtijr

Noting that for small z, In(2-x)wx, it can be intuitively seen

that the two estimators given by (4.2) and (4.3) respectively are

is



nearly the same for large nit. In Appendix B, this point is used

to prove the following:

Theorem 4.1

The maximum likelihood estimate B F-(t,,) is consistent for

estimating B(t,A,x). i.e.,

Plim B F~(t,&,a) -B'(t,t,,Z) 0.-
N- I I

Thus, the asymptotic properties th t hold for B also hold for

B F-M In particular we have

Theorem 4.2
VIN ( BiF-M(t. A, ) Bij(tAz)

N--M I g.(a) dwi (a)

where Wij(a) is the Weiner process and f gij(s) dW.j(a) is a normal

process with independent increments and

a (a
j'+i X, j"'

Theorem 4.3

li. Va r (B..F-(t.A'a) - BiJ(t, ,z)

.- ft * a) da

A I f gj"() P...(Ohe'a)

S. ILLUSTRATION OF MULTIPLE TRANSITION ESTIMATION

In order to illustrate the use of these techiiques in the analysis

* 16



of data from an actual clinical trial, we have drawn data from a

comparison of two protocols for treatment of hepatic hemorrhage.

The sample consists of 89 patients who were admitted to a local

medical center with hepatic hemorrhaging which was in most cases a

complication of alcholic liver disease. The patients were randomized

into one of two treatment protocols. Patients in Group 1. received

the standard medical treatment for this disorder, which consists of

whole blood transfusion and antibiotics. Patients in Group 2 re-

ceived, in addition to the standard treatment, a porta-caval shunt

operation to route blood around the hemorrhaging portion of the liver.

There was a lag time between admission to the study and randomization

into treatment groups which ranged from 0 to 22 months. At the time

of randomization, a complete blood chemistry workup as well as a

disease history was taken. Demographic data for this clinical trial

are contained in Fertig, Murthy, et al (1979).

During the follow-up period occurrence times of several events

were noted. The relevant events for the purpose of this example are

death from hepatic hemorrhage, death from other cause, withdrawal re-

sulting in loss to follow-up, and a rise in blood bilirubin level

over 3mg. which was taken as an indicator of hepatitis onset. These

considerations define five mutually exclusive states:

State 1: Patient alive, no hepatitis since randomization.

State 2: Patient alive, hepatitis infection has occurred.

State 3: Dead from hepatic hemorrhage.

State 4: Dead from other causes.

State 5: Withdrawing lost to follow-up.

17



Since State 1 can never be reentered, and since states 3 through

S are absorbing states, the only allowable transitions are 1-2, 1-3,

1-4, 1-5, 2-3, 2-4, and 2-S. All patients entered the study in state

1.

The above classification of states represents a competing risk

model when there is the risk of dying from hepatic hemorrhaging and

the risk of dying from other causes. The primary interest in this

study is in the effect of treatment on, he probability of dying from

hepatic hemorrhaging. Since the treatment for each of the patients

in this study involved whole blood transfusions, there was a large

incidence of hepatitis, the presence of which could alter the effec-

tiveness of the porta-caval shunt operation. Thus, it is important

to be able to estimate the effect of treatment on the 1-3 transition

intensity (no hepatitis - hepatic hemorrhage) separately from its

effect on the 2-3 intensity (hepatitis + hepatic hemorrhage). The

multiple transition model presented in this paper allows for just

this separate estimation to be performed.

To this end, we define the first covariate, a(l), such that

a(1)-O for those patients undergoing standard treatment, and z(1)=i

for those patients undergoing a porta-caval shunt operation. For

(2)illustrative purposes, we consider a second covariate, x defined

as 0 for those patients whose time to randomization was less than

the median time, and as 2 for those patients whose time to randomiza-

tion was greater than the median.

The total number of transitions for all 89 patients was 142. A

selected subset of these transitions, together with covariate

18
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information is presented in Table 1 below.

TABLE 1

Selected Events for Porta-Caval Shunt Clinical Trial

Treatment Lag Time
Event From To Covariate Covariate

Event Patient Time State State Value(2 ) Value(2 ) P (t)
No. I.D. (Weeks) i j ) i(M)

1 33 0.286 1 4 1 1 (1,2,...,89)

2 69 0.571 1 2 0 0 f33)

3 75 0.714 1 4 1 0 {33,69)

4 69 2.000 2 3 0 0 (69)

70 47 84.286 2 4 1 0 7,13,18,20,
23,29,31,47,
54,56,62,64,
70,72,76,80,
81,85)

139 12 476.143 1 5 1 1 {13,9,12)
140 9 522.143 1 5 1 0 {1,3,9)

141 1 523.428 1 5 1 0 {1,3)

142 3 525.857 1 5 1 1 {31

Transitions i--, i-i, 2 represent loss to follow-up. These tran-

sitions supply no information pertinent to the study of treatment

effect. State 5 is thus not treated as a competing risk. Rather, the

time that a patient undergoes in i-o-5 transition is the time he is

deleted from Ri(t) (the risk set of individuals who may undergo a

transition from state i). This is formally done by setting a.5,=O

for all t. at which these transitions have occurred. In this case

19



the matrix whose elements are defined by equation (3.14) reduces to

the identity, and the matrix of trafisition probabilities remains un-

changed at time t,.

The raw estimates of the parameters a were obtained by the

partial likelihood methods discussed in Section 3 and are displayed

in Table 2 along with their standard scores, obtained by dividing

each estimate by its estimated asymptotic standard error.

TABLE 2

Covariate Parameter Estimates

TretmntEffcta(1) Lag Time Effect a T
From To Treatment Effect (1) "JState State Estimate Est/S.E. Estimate Est/S.E.

1 2 -0.0139 -0.05 0.0486 0.17

1 3 -C - 0.2432 0.33

1 4 0.0687 0.11 0.2837 0.46

2 3 -1.9088 -2.43 0.6218 1.07

2 4 0.8275 1.65 0.6937 1.55

The estimate of - resulted because all the, 1-3 transi-

13

tions (eight of them) occurred among people in the "standard treat-

ment" group. The permutation test of the hypothesis that the eight

transitions are evenly distributed between the treatment and no treat-

ment groups rejects this hypothesis at the 0.01 significance level.

Using the techniques of Section 3, the matrix of transition

probabilities was estimated at each event time. For example, consider

the first event in Table 1. A patient with covariate x - (2,1) en-

tered state 4 from state 1. From Table 2, we can compute a,4 P21
0.5623. At the time of this event, all the patients were in
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state 1, so all were at risk. The value of I exp (a' Xp) for this

risk set is 107.283. The resulting'estimate of &,4, from equation
A0.35231207.283) 0.523,,0.033 h

(3.11) is a141 = -in (1-e 00.009383. The

probability transition matrix, Pij(O,t;,) is the identity matrix for

t<t(1 ).20.286. At t=20.286, it is updated according to equations

(3.13) and (3.14). For the case z=(O,04, we see from (3.14), that

0.9907 0 0 0.00934 0

1 0 0 0

P(O,t l ;z)=P(t;,tl; 8 =(O,O)) = 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

where the P1 4 element is given by 2 -[exp -0.009383 e aL4 z ] which

reduces to 0.00934 for z=(00).

As an illustration of the updated procedure, we consider the

event at time t(7 0)=84.286. Without specifying the details, we have
a24to=0.01987. From this we can compute Pij(t70' t7 0 ;z) from

equation (3.13). The non identity portion of this matrix is

P24 (t7o, t7 0 ;z) = 1-exp [-0.01987 e '2 4z ]= 0.01967 for

z=(OO) and P2 2 (t-70 3 t70 ;z) = 0.98033.

The updating of P(Ot;z) to t=nt70 is done by noting

P(o, ~to;7 ) 0 P(6, 9 ;z) P(t69 , t70 ;z) P(t;-0  t7 0 ;z)
"

But P(t6 9  t;o;a) " I. Thus, for x=(O,O),

21
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0.403 0.223 0.264 0.111 0

0 ..0 1 0 0

P(O, tO;Z) 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 0.9803 0 0.0197 0

0 0 1 0 0

0 0 - 0 1 0

0 0 0 0 1

0.403 0.218 0.264 0.115 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

where P(O,t 69 ;z) is as indicated above.

We see from this, for example, that the probability a patient

with covariate value z=(O,O) remains in state 1 for t,0=84.3 weeks

is estimated as 0.403. Note that the fifth state, lost-to-follow-up,

has zero entry probability from states 1-4. This is a consequence

of setting ai5=0 for i=1,...,4, and is in keeping with the Kaplan-

Meier treatment of the censored state.

We present in Figures 1 and 2 plots of P13(O,t;a) and P14 (O,t;z),

respectively for all values of z. A literal interpretation of Figure

1 is that a person in the surgical treatment groups is much less

likely to die from hepatic hemorrhage, than a person in the standard

treatment group, which is the expected result. This large difference

22



is primarily due to the infinite estimate for a1 There is13

essentially no difference that can -be attributed to lag time to

randomization.

From Figure 2 we see a person in the surgical group is much

more likely to eventually die from other causes than a person in the

non-treatment group. This apparent negative consequence of treatment

could easily be accounted for by the fact that those patients who

were not treated had a higher incidenc of death from hepatic hemorr-

haging and thus were not available to die from "other causes". In-

spection of Table 2 indicated, however, a very marginal positive

24 Though not statistically significant, an a24 of 0.8275 is an

indication that treatment enhances the hazard of dying from other

causes.

23

" NO



FIlVtE I

Probability of death age. to bepatic hemorrbaje in the presence of
all other causes of death versus time on study.

0.42

0.4

a
I z::

0.96,

C

500 200 300 400 So 00

Elapsed Time In StudY eeks

ofreathersu tip e o-tn stud.I-otISu] -a 1

Lo0.e9t6.a-mdin -ta a)



REFERENCES

Aalen, Odd Olai (1975). "Statistical Inference for a Family of
Counting Processes". Ph.D. Dissertation, University of
California, Berkeley 1975.

Chiang, C.L. (1968). "Introduction to Stochastic Processes in
Biostatistics", John Wiley & Sons, New York.

5

Cox, D.R. (1972). "Regression Models and Life Tables". J.R. Stat.
Soc., B., 34, pp. 187-220.

Cox, D.R. (1975). "Partial Likelihood' Biometrika, 61, pp. 31-37.

Fertig, K.W., Murthy, V.J., Sposto, R., Weiner, J. (1979). "Analysis
of Survival: Multiple Transitions, Competing Risks, Covariates
and Censoring". Technical Report No. 2, Dept. of Medicine,
Cedars-Sinai Medical Center, Los Angeles, Ca.

Flemming, T.R. (1978). "Nonparametric Estimation for Non-homogeneous
Markov Processes in the Problem of Competing Risks". Annals of
Statistics, 6, 5, pp. 1057-70.

Kalbfleisch, J.D. and R.L. Prentice (1973). "Marginal Likelihoods
based on Cox's Regression and Life Model". Biometrika, 60, 2.

Kaplan, E.L. & P. Meier (1958). "Nonparametric Estimation from In-
complete Observations". Journal American Statistical Assoc., 53,
pp. 457-81.

25

--



APPENDIX A

Notation

v. .(t,z) = V.. (t,a) exp (a'j a), i~j

1.-(t,Z) -. i (t)zz j3j~i &

N Total pool of patients.

a.. . Covariate parameter vector for i-j

N. .(t) # of i-j transitions up to t.

z . Covariate vector

h.. exp (acj a)

t.. rth i-j transition.,Qr

P.. Patient labelled P.. undergoing i-j transition.

nt # of patients in R.(t).

R.(t) fp/U (t-) = i)
z- p

hij exp (a .j z (tij )
rPijrhi jrr

h.. A )P)(t)
iJr n itijr p I(U (t-) h

tir p-I

(p)
hi (t) exp (at' z (t))

Z Space of covariate vectors.

gi(z) Multivariate distribution of covariates a for

patients entering state i.

Probability of entering state i.
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APPENDIX B

Proof of Consistency and Weak Convergence

We will now prove the consistency of our estimator for the integrated

intensity matrix
BiJ (t'A'z) - ft vij (tz-) dt (1)

2.3 A

Assuming the a.. vectors are known, our estimate for (1) denoted byZj
F-M

B (t,A,x) is given by I

B- (ttz - (0 ) F-
F ftZ v. (tj',) h. dt

A 32

A<tijr t  it iJtj

=0 fo 2.±:r 2.3?for nit. > 2

0 for n it. < 2 (2)

We will prove the consistency of our estimator (2) for estimating (1)

by proving that our estimator is equivalent in probability to Aalen's

consistent estimator (1975) for estimating (1). Now Aalen's estimator

for estimating (1) is given by

BA(t,A,Z) = jt vo A(t;z) h. dt

ij(3)

A<tijr<itnijr  hiijr

We will now demonstrate that the difference between (2) and (3) will

converge to zero in probability. To simplify the proof we assume

the following:
Inf

A1 : " ijnCZ exp (Ct. a) > 0

A 9 - Sup exp (a ) <
e-i,j, c 2

**- 2 - -



A3  N- Pit> 2 ' nat>2,v O<A - t - TJ - I

A4  : ijicZ j

The proposition to be established is then given by the following

theorem and its proof.

Theorem:

Plim A A(t.& x) _ F-N~'AX

for all t such that A<t<T. (4)

Proof:

For given c>O, 6>0, in view of A3 choose N0 (T) such that for N>N 0(t)

P fn it >2,..,n s a t>2Vt30<A<t < l>161 5

Now, for fixed t with probability greater than 1-6/2 we have

A B F-M (t,A,z)

h. hi

lz.. h.
=n i- _i-jr (6)

Aitzr.< it n~ ijr hOt ijr it ijr jt ijr

By A ,ni >2 which implies - *_ <1
nitijr 

iJtijr

Hence, the left hand side of (6) is dominated by

A F q- 1

A_ -M 1 h'ij h Z.7

r3At..tt.- it.
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< V h1. hi

r3A<tijr5t q=2 q aijr tijr

< hij q3 <_ei+ (nit-1)0i q1

q
h..I

- to's * ( ni -1) ) (7)0r3A~t ijr t q-2 q i jr-O

Now there exists a constant A such that1

A 1  /q
2 q.2 q ( 0 + (ni -2)0n it it-

for Vnit>2.

In particular choose

-T -O i q+2

We then have

r3<t.rt nit
ijr

h.
= A dN .), (8)

1-8

where N. (a) is a multivariate counting process with intensities
N (o)(a 8 9

vij(a) N exp (j V) V(UV(S) -i)V..(a)J(a) (9)

and M.i(t) - Nij(t) _ jt vi (a) do (10)
0

are orthogonal integrable martingales by Aalen's (1975) theorem 2.1

on page 14.
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V .(s),n. > 2ii I'
Let ij(a) - n (11)2. (0 . n. < 2

Now, consider the random variable

02(W) - t 21 di (8,W) (12)
An! (Wa)

Since 0 is positive, we have

Pn '0 (4) . 0 if we can show that

lim

But

E(O(w)) = E ft 1 dN..(8,W)
A (,W)

It E(- 2--- do (13)
a nis

because Mij N. .(t) ft x.i(a) do and fH(aw) dMi (s,w) are square
2.3 Yi 0 '7' 2.3

integrable martigales for any simple process H(s,w) as defined by

Aalen (1975) on page 8.

We have N (V)

M (t) -(t) I hi (s) I(U (8-)=i) J (a) V .(s) do
22A v=1 23 V

for n. > 2

0 0 otherwise; and
N (14)

n I l(U (8-)-i).

Now for ni • 2

4 IIr ('I)

v-

A. I < I -- , h ) i (



.Max h(t) V°'(t)i I a(t')i)

- it (1s)

where X<- by A.4

Hence E
It" '( )< 'is L ( )
n! N-0- i

tt t
1 im _/N_0

N- K/N 0

N-o-o "N-

Since 0i¢>0 by A.3. Combining equations (8), (13), and (16) we finally

obtain that

Phim f - NF'MCtAz) 0 (17)

AF-MIn other words our estimate B is asymptotically equivalent in proba-

bility to Aalen's (1975) estimate B (t,A,z). But the consistency of
Aalen's estimate is established in proposition 8.1 on page 69 of his

thesis (1975) assuming that the risk sets grow large like N. There-

fore, we obtain

Theorem

B-M(t,A,) defined by equation (2) is consistent for es-

timating B(t,A,z) - ft vi. (s,x) de.

Weak Convergence and Asymptotic Variance of B-(t'Aft)

From the martingale convergence theorem given on page 29 and the

theorem 8.2 on page 69 of Aalen (1975), we obtain that

(t. A, ) -B(taX

i()
g.. i j (a) dWi (8)
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where V si (0) is the Weiner process and f gi (e) dV..j(s) is a normal
process with independent increments where

'iin N-N V I ( V # )- ) h ( ) V (8

lN NV 2v

V Irz (j) 7(g / (8)19

.- V Ors

But

Pli N (V)

MEI(U( Vs-)i) h i()

Mg..(x) P... (oss exp (a'. x) dx

(20)
Therefore,

9j-(x) P. .(0,8,x) 7[ xp (&'. i ) dx

Hence the asymptotic variance of -Y(--

is given by

ituv [i - Bar qj t.A6'x)]

t VO (a) d

II rj(X P OSX) ep( a) da
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I Ote Carlo CoMPrisGn of Cox's Partial vs. Total Likelihood

The performance of the maximum total likelihood estimate and the

Cox mximm partial likelihood estimate are compared using Monte Carlo

computer simlation techniques. A wide variety of different experimental

conditions, including those pertaining to an actual clinical trial, are

used to evaluate the effects or changes in basic parameters on the size

and power of three teats. The parameters considered include censoring

(presence or absence), the baseline hazard rate, the number of covari-

ates and their distributions, and the magnitude of the covariate effects.

Distributional data for the estimates of the covariate effects, includ-

ing confidence bounds for selected percentiles, are also given.

1. Introduction

In recent years much attention has been given to the problem of

accounting for covariate information in survival analysis of clinical

trials in which study participants may have been censored. Cox (1972)

addresses this situation by proposing the proportional hazard rate model:

A(t I zi ,) - 0(t) exp [3 , zil ,

where (t I 13) is the failure rate (hazard function) for the i-th

patient, at  is the covarlate vector for that patient, and P is the

vector representing the effect of the covariates. 'o(t) Is an arbitrary

function representing the baseline failure rate -- the failure rate for a

patient with cawvriate vector i -,2. The survival function, 8(t I i,

and the failure density function f(t I si ,p) are then given *by

S-(t I Sio f .(x, -P)dz} a OxP- {.. (.. 2 J (

and
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f(t zis 0) . 'A(tiz, 0) s(t Izi, 0)

aWWexp ?P' :1 - Onp (is, z) f o(x)dj

respectively.

Much analysis has been done in the exponential case where

Ao(t) - e (Glasser, (L967), Sprott and Kalbfleisch (1969), Breslov

(1972) and Prentice (1973)). Simple departures from the constant

hazard model are accomidated using the Weibull model where NO(t) 
0+9 lnt0 1 (Prentice, 1973). When the concern is chiefly to esti-

mate the covariate effects, Cox's partial likelihood (Cox, 1975) is

attractive, for it ignores the formulation of O(t). Oakes (1977)

and Efron (1977) establish conditions under which the partial likeli-

hood is asymptotically fully efficient, and show that under many

circumstances of interest, the partial likelihood suffers little loss

of efficiency. In an important recent work in this area, Lindsay

(1980) proposes the mixture model as a tool for evaluating the maxi-

mum partial likelihood estimates in the covariate case, and gives

conditions under which it is fully efficient within that model, as

well as providing a lower bound for the asymptotic variance in those

cases. Peace and Flora (1978) did important work on the effectiveness

of various tests in the small sample situation, using Mmte Carlo

methods to copare the size and power of tests based an Cox's maxi-

uto partial likelihood estimate (MPLE), O, and the amax i total



lilelhood estimate (ILE), 6T of 1, for the above models in an

experimental situation. In this paper we expand and refine their

work. We compare the performance of the partial and total likelihoods,

using three test statistics based, respectively, upon the asymptotic

normality (AN) of 6, the likelihood ratio (LR) criterion, and

the asymptotic normality of the gradient of the likelihood function

(DLOGL) evaluated at the null hypothesis. The baseline hazard X 0 (t) is

parametrized using zero, one and two of the nuisance parameters Oi, respect.

ively. The test statistics are compared based on the partial likelihood,

the exponential total likelihood, and the Weibull total likelihood.

Our results are divided into parts. In the first part, we

consider an experiment in which a single covariate takes the values

zero and one. We explore the size and power characteristics of the

LR, AN and DLOGL tests for the KLE, the exponential MTLE, and

the Weibull MLE, and how they change due to censoring or variations

in the null ypothesis, the sample size, or the covariate distribu-

tion. In the second part, we look at the distribution of 6 under

these circumstances. In part three, the performance of the various

tests is evaluated in a clinical situation, using the covariate

distributions and censoring patterns found in a clinical data base.

2. Test Statistics

Let [ti- denote the termination times for the N test

- 5-



participants and [x 3 be an indicator variable where xt - 0

if the participant was censored, and xi = 1 if the termination was

a failure. The log of the total likelihood is then given by:

N

log IL - x (in NO (to(ti) + n S(ti Iz, 15

L-1

and the log of the Cox partial likelihood is given by:

log LC x, 01 xi zi -in e15 zJ)

i= iJC(t i )

where R(ti) is the set of participants at risk at time t i . Using

a modified Newton-Raphson technique, the estimates of 1 and 0 were

found, both under the null hypothesis and the alternative. Under cer-

tain regularity conditions we have, as N -.

(i) 2(log L( o ) - log L($)] -- X2
0 (k)

(a) -%FN 0  0L (k)

00

00

~" [ ° l %

where k is the number of parameters being tested under the null
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hypothesis. Here, P is the vector of cobined paramzers

-(p,o) - ,e . k,..,n,',...,-,,

where 0 parameterizes 'ho(t). The hat an o refers to the maxi-

mum likelihood estimate of o and the zero subscript refers to the

maximum likelihood estimate under a specified null hypothesis. Thus,

if the hypothesis is:

HO : 0i m i0, 1 < i < k, for k< n

versus

K :15 1 010 for some i , 1 < i< K

then

"

where 0(k+1)0...*#nO'QlO,... OMO are the maximum likelihood esti-

mates of these parameters under HO.-

3. The Simulation

Each experimental run consisted of the generation and analysis

of 1000 samples. The survival times were generated randomly,

according to the formula

t S-l(rei Iz O, 0)

-37-
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where S' 1 (" I z - 0, 0) is the inverse of the survival function,

takenwhen A - 0 and z - O. The quantity 5 is the true value of

1 for the simulation and S-1  is generated tabularly with r taken

from the uniform (0, 1) random number generator;

n

S 231 -

where

n" (n.-.." 630, 360, 016) mod (231. 1)

As for the data from an active clinical trial, data was taken

from the Western and Southeastern Cancer Study Groups' breast cancer

studies. Three covariates were chosen:

Z1 - treatment type (65.3% zeros, 34.7% ones)

- years (y) free from cancer prior to entering study ,

-o if o<y<l (45.2%)

=i if 1<y<5 (45.2%)

*2 if 5<y (9.6%)

- 0 if liver metastases absent at entry (57.6f) ,

a 1 if liver metastases present at entry (42 .4%)

Two additional covariates were defined to measure interaction

effects:

z - ( - 1)(I - z) and Z - (1 -Z)Z

-3&-



which were present in the following proportions:

Z, Z3 Z4 Percent

o 0 0 18.1

o 1 0 10.5

1 0 0 24.3

1 0 1 47.1

The partial likelihood estimate of 0 over the breast cancer

study is p* a (0.47109, -0.34805, -0.26766, -0.44233) when

(zl,Z2 ,,Zz) is the covariate vector. * a (-6.1771) is the

nuisance parameter estimate under the exponential model, end 9*E a

(-6.9318, 0.1388) is the estimate under the Weibull model.

The method of censoring is also derived from the data base.

The Kaplan-Meier (K-M), or product limit estimate of the censoring

distribution for the data was computed and stored in tabular form.

It is displayed in Figure 1. A random censoring time was evaluated

for each study participant according to this distribution and, if it

was less than the survival time for that participant, the survival

time was replaced by the censoring time and the participant was con-

sidered to have been censored. This is a time dependent, and

therefore, covariate dependent form of censoring. The effects of

this type of censoring on different covariate combinations are

discussed later in the paper.

-'9-
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3.1. The Results - Part 1

Tables 1 and 2 shov the results of a set of ninety simulation

rus for a model with one covariate, z1 C (0 a 11. In the exponen-

til case 6- (0.0) for rows 1-6 of each table and o-m for

rows 7-9. In the Weibull case, 8 (1.0579, 1.0) in ron 1-6

and ' - in ran 7- 9. In the Appendix herein we show that the

value of Q has, in the absence of censoring no bearing on the value

of a in either the exponential or the Weibull models. In lines 1- 7,

z is chosen without replacement from a population of size N, con-

taining half zeros and half ones. In line 8, Z is chosen with

replacement from the same population. In line 9, z1  is chosen with

replacement from its empirical distribution in the clinical trial data

base.

In the first three lines of each table, we see the effects on

the test statistics (under H0 : S - 0) of variations in the sample

size in the absence of censoring. Power curves corresponding to the

DLOGL test are chosen for visual comparison and are displayed in

Figures 2 and 3. Upon inspection of either the tables or the graphs,

it becomes imediately evident that the partial likelihood is much

less powerful than either of the total likelihoods for N - 10. The

AN test performs very poorly under the partial likelihood, the LR

test does better, and the DLOGL test is best of all, though it still

falls well short of the same test in the total likelihood analysis.

On the other hand, the tests in the total likelihood analysis are

very sililar to each other, although the DLOGL test still appears

-0-



to be somevhat more powerful.

Comparing the sizes ot the tests, ve observe those based on

the Weibull model are very biased. Using the Kol)ogorov-Smirnov

(K- S) confidence intervals we reject the hypothesis with 95%

confidence that any of theu are truly l) A representative plot,

using the DLOGL test is given in Figure 7. Under the partial like-

lihood, the DLOGL test is again not X) though the deviation is(1)'
not so great, as is seen in Figures 4 and 6. The L.R. test appears

tobe %(i) and the AN test is borderline; failing the K-S test

and passing it once. The tests based on the exponential model appear

to be X2

When N - 20, the partial likelihood compares better against

both of the total likelihoods. The various tests based on the partial-

likelihood are much closer to each other in power, and much closer to

the corresponding test in either of the total likelihoods. The sizes

of the various tests are stabilizing as well, although the tests

based on the Weibull model are still rather far from X2

By the time N - 40, the irregularities are all smoothed out,

almost down to random fluctuations. The tests are now almost close

to () and the powers differ only slightly between tests under a

given model. The partial likelihood is now competing veLl against

both the exponential and Weibull total likelihoods. The DLOGL test

still appears to be the strongest test in all cases, and while the

AN test appears to be slightly stronger than the L.R. test in the

total likelihoods, the two tests are almost indistinguishable in the



partial likelihood, with perhaps a slight preference going to the

L.R. test.

Lines I-6 in Tables 1 and 2 give results for experiments

identical to those above, except that they correspond to testing

N:1 - 1 against H1 - 0 1. An immediate observation is that

for N - 10 the L.R. and AN tests have no power at all against

P1 > 1. This is due to the clustering of the covariates, so that

all of the members with z1 a 1 fail before any of the members with

s1 - 0. Under these circumstances, the MPL of 1 is infinite

under the alternative hypothesis and the analysis fails to converge.

Our program hAd no. means of dealing with these cases, except to

throw them out, which, of course, seriously weakened these tests when

it happened frequently; namely, when K was large and N was small.

The DLOGL test computes the MLE only under the null hypothesis,

therefore, it was unaffected by this problem. Even so, it too was

asymetric in A1 around 1, being more powerful against I1 < 1

and less powerful against. P1 > 1. This bias is characteristic of

the tests based on the partial likelihood, being evident for N - 20,

40 as well, with the L.R. test being least affected by it. On the

other hand, the tests based on the exponential total likelihood are

not visibly affected by the change in N apart from rando fluctu-

ations, just as they did before. Tests based an the Weibull total

likelihood showed a moderate asymetry, again with the L.R. test

being relatively less affected than the others. The partial likeli-

hood is nearly as strong as the Weibull total likelihood on the left,



though significantly less strong on the right, while the Veibmll is

weaker than the exponential at all points.

Line 7 in Tables 1 and 2 is identical to line 3, except that

censoring is imposed using the K- M estimate of the censoring dis-

tribution of the clinical trial, as described in the previous section.

When z 1 M O, the censoring probability is .128 for all values of

F; the censoring probability for z- a 1 varies with K an shown

in Table 3. The tests all lose power due to the censoring, more so

where X < 0, due to the greater probability of a sample member

being censored, than where X > 0.

Within each model the tests retain the same relative strengths.

Tests based upon the Weibull MTLE suffered relatively less loss of

power than the tests based on partial and exponential total likeli-

hoods. This is, perhaps, due to the effect of time-varying hazard

rate on the censoring distribution. ExamLining line 8 where the co-

variates are selected with replacement and line 3 where they are

selected without replacement, we observe essentially no effect on

either the power or size calculations. However# the additional

change of the covariate distribution which was affected in line 9

has greater influence. The various tests are weakened, but not uni-

formly so. The L.R. test is weakened more on the right than on

the left, while the AN and DLOGL tests are weakened more on the

left than on the right. The bias of the L.R. test is observable

on all of the models, but the bias of the AN and DLOGL tests is

evident only on the KM and the We ibull ITLE.

__________________________________________- _____



3.2 Results - Part 2

Tables 4 and 5 give scaled confidence intervals for selected

percentiles of $ when N - 40, under conditions similar to those

mentioned in Part 1. All of the values have been standardized by

subtracting the median and dividing by a scaling factor equal to

the interquartle range, divided by 1.349 (the interquartile range

for the normal distribution with J - 1).

Deviations from normality occur sporadically throughout and

are attributable, in many cases, to chance fluctuations. However,

when F - (1.0), we see a more pronounced trend away from normality

among the MPLE and the Weibull MTLE. The right tails of the dis-

tributions are generally heavier andp in the Weibull MTLE, the

median is biased high. However, these changes are not discernable

in the exponential MTLE.

3.3 Results - Part 3

Table 6 gives the results of tests patterned after the data

taken from the breast cancer data base mentioned previously. Samples

of size 40, 60 and 100, were taken with replacement from the data

base itself and analyzed both for size at -0 and poer at 8

(restricted to the number of covariates being analyzed) against the

null hypothesis that F - 0. The covariate vectors used are (z1)P

(Z2sZ) and (z1 P 2 z 3 , z4)* with the distribution of the terms

given in Section 3. In the exponential case " and in the

Webull case 4=7 W"
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The performance of the partial likelihood in the ome-covariate

case is nearly indistinguishable from the performance of the total

likelihoods, either with censoring or without. The DLOGL test is

the most powerful test throughout, while retaining good size charac-

teristics, and the L.R. test is the least powerful. Censoring has

a minor impact on the power of the tests, but in this situation has

no effect on their relative power. Even at N - 100, the tests are

clearly not powerful enough to decide against H0 :15 - 0; larger

samples are obviously required.

With two covariates, the tests are somewhat more powerful,

but unchanged in relationship to each other. Censoring has less ef-

fect in this case because 0 < 0, which reduces the probability of

censoring for many sample members.

The four-covariate case is not strictly comparable with the

other cases due to the interdependence of the covariates. This can

be seem in the power of the various tests, which is lower than in the

tvo-,cavriate case because the combined effects of z1 and z4

n.':arly cancel each other, occurring 47.1% of the time.

The size of the DLOGL test, and., to a lesser extent the AN

test, are severely affected, especially when N - 4. Whether this

is attributable to the interdependence of the covariate values, or

wbther it Is simply due to the large number of covariates and their

distribution taken independently of each other, remains to be tested,

althagh the latter appears likely.

.i



4. comuxtational Note

The progrm which generated these results was written in

Fortran IV and run c a PDP 21/34 with 96k of care. hm time for

each simulation varied from about 45 minutes to over 20 hours

of CPU time, depending on the complexity of the analysis. Well

over a thousand CPU hours were required from program development and

simulation run time. The authors wish to thank the Department of

Obstetrics and Oynecology at Cedars-Sinai Medical Center, Los

Angeles, California for the free use of their computer for this

enormous usage of computer time. This work would have been impossible

without their generous aid.

5. Avendix

Here, we show that when the covariates are time-independent

and censoring is absent, then the MTLE of p is independent of 0

n the exponential and Weibull models.

Consider first the Weibull model,

'A0(t IGO  ) - (exp(+G ln t)

Reparametrize as follows:

a to .x 0(+4 1  and b 01+13

to get



No(tla, b) - et b l .

Now, suppose t arises from the distribution:

bb
F(t 1 1&,, bl) - 1 - ep at1ep('0

If (&,,bl) - (a2 ,bZ 2 ), then t 1  -t 2  such that a&tlm

b2
a *,2 NOW,

N1 b
L(t~lalbl )  " bljt " exp(' zL - a t 1 1 exp, (0' zl

ili

where tt and zi belong to the 1-th member of a study of size

N.

6 in L(t1&,, b1 )

[in (ab 1 )- (b 1-) tb exp (1' z)]

- [zsj -z tt exp 05' z~t
i-i )

n ce the likeli-,,d is.maximi.ed when -Lq, bi . ,47

l -



Substituting in

t - (a2 b)1/b

gives

a, l1/b 1  'j2)b

t21 1 1
i-i -

We nov have the folloving identities:

2 -,jZl/bl,

The results for the exponential case may be seen as a special

case of the above proof, vhere b 1 -, 1 b2 " i"1.

¢ps



References

Breslow, Norman E.
(1972) "Covariance Analysis of Censored Survival Data,"

Biometrics, 3, 80-99.

Cox, David R.
(1972) "Regression Models and Life Tables," Journal of

the Royal Statistical Society, Ser. B, 34, 187-220.

(1975) "Partial Likelihood," Biometrika, 62, 269-276.

Efron, Bradley
(1977) "The Efficiency of Cox's Likelihood Function for

Censored Data," Journal of the American Statistical
Association, 72, 557-565.

Glasser, Marion N.
(1967) "Exponential Survival with Covariance," Journal of

the American Statistical Association, 62, 591-56.

Lindsay, B. G.
(1980) "Nuisance Parameters, Mixture Models, and the

Efficiency of Partial Likelihood Estimators,"
Philosophical Transactions of the Royal Society of
London, Ser. A, 296, 639--65.

Oakes, David
(1977) "The Asymptotic Information in Censored Survival

Data," Biometrika, 64, 441-448.

Peace, Karl E. and Flora, Roger E.
(1978) "Size and Power Assessments on Tests of HIypotheses

on Survival Parameters," Journal of the American
Statistical Association, 73, 129-232.

Prentice, Ross L.
(1973) "Exponential Survivals with Censoring and Explanitary

Variables," Biometrika, 60, 279-288.

Sprott, D. A. and Kalbfleisch, John D.
(1969) "Examples of Likelihoods and Comparison with Point

Estimates and Large Sample Approximations,"
Journal of the American Statistical Association, 64,
i68-L'89.



Legend for Tables

15 0  : value of p under null hypothesis

X : true value of 5

Cow : method of selecting covariate values, i.e.,

F - without replacement from a group of size N

containing half zeros and half ones

R - same as F except with replacement

E - with replacement from the values of z I taken

from the data base

Cen whether censoring is imposed - Y - yes and N - no

N sample size

Test L - likelihood ratio ( L ) test

A - asymptotic normality (AN) of test

D - asymptotic normality of gradient (DLOGL) test
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Pata - - tftt@ h Prtial Weibull

Coy Cen N Test S P S P 8 P S P

1 N 4o L 5.5 24.0 5.o 26.o 6.5 27.0 6.5 30.0
1 A 6.0 26.0 5.5 29.0 6.5 29.5 6.5 32.o

D 6.0 27.0 6.0 30.0 6.5 31.0 7.0 2.5
60 L 5.5 40.5 4.5 41.5 4.5 35.5 5.0 38.0

2 A 5.5 43.0 4.5 4.5 5.0 38.0 5.0 41.0
D 5.5 44.0 4.5 45.5 5.0 38.5 5.0 42.0

100 L 5.5 58.5 5.5 60.0 5.5 57.5 5.5 59.0
3 A 5.0 60.5 5.5 62.0 5.5 59.0 5.5 60.5

D 5.0 61.0 5.5 62.5 5.5 60.o 6.0 61.o

1 y 40 L 5.0 26.5 5.5 27.0 5.0 23.5 5.0 26.0
4 A 4.5 28.5 5.5 29.5 5.5 24.5 5.5 28.5

D 5.0 30.0 6.0 31.0 5.5 26.0 6.0 29.5
60 L 4.5 37.5 4.5 40.0 5.5 33.0 5.5 35.0

5 A 4.5 39.5 .5 41.5 5.5 3-.5 5.5 37.0
D 4-.5 41.0 5.0 42.0 6.0 35.5 6.0 38.0

100 L 5.5 56.o -5. 56.5 6.o 53.5 6.0 55.0
6 A 5.0 57.0 5.0 59.0 6.0 56.0 6.0 56.5

D 5.0 57.0 5.0 59.0 6.0 56.5 6.0 57.5

2 N 40 L 5.5 39.0 4.5 ..5 7.5 37.0 7.0 44.0
7 A 5.5 39.5 4.5 44.5 7.5 38.0 7.0 44.5

D 5.5 40.5 5.0 46.0 .0 39.5 8.0 46.0

60 L 6.0 56.5 6.0 60.0 5.5 54.5 6.o 56.o
8 A 6.o 56.o 6.o 6o.0 5.5 54.5 6.0 58.0

D 6.5 56.5 6.5 61.0 6.5 514.5 7.0 58.5

100 L 6.0 75.0 5.0 78.0 5.5 78.5 5.5 80.0
9 A 6.0 75.5 5.0 78.5 6.0 79.0 5.5 81.0

D 6.0 75.5 5.0 79.0 6.5 79.0 5.5 81.0

2 40 L 5.0 35.5 5.0 37.0 5.0 35.0 6.5 38.5
10 A 4.5 35.0 5.5 38.5 5.0 35.0 6.5 39.0

D 5.o 36.o 6.5 41.0 5.5 37.0 7.0 0O.O
60 L 4.5 47.5 5.0 50.5 6.5 50.0 7.0 54.o

:U A 14.5 47.5 5.5 515. 6.0 49.5 7.0 54.5
D 5.0 48.0 5.5 52-5 6.5 51-. 7.5 56.0

100 L 6.5 72.5 6.0 74.5 5.5 72.0 6.0 74.5
12 A 7.0 72.5 6.0 75.0 5.5 72.0 6.0 714.0

D 7.0 73.0 6.0 75.5 6.0 72.5 6.5 74.5

Table 6

Size and Power Assessments for Tests Based

an the 2krtial, Expoentil Totals and Welbull

Total Likelihoods, Under Experimental Conditions

_ _ _ _ _ _
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.hl:.t. Eximn tial 1:bxtil We lbu.11

Coy Cen N Test S P S P S P S P

4 3 40 L 6.5 31.0 5.0 33 .5 5.5 31.0 6.0 35.5
13 A 7.0 32.0 6.0 36.0 7.0 3.5 7.5 38.5D 10-0 37.o 8.5 41.o 9.0 38.o U.o 43 .5

60 L 7.5 41.0 5.0 43.5 5.5 45.0 7.0 48.0
14 A 7.5 44.0 6.0 48.0 6.0 46.0 8.5 51.5

D 9.0 47.5 7.5 51.0 7.6 50.5 9.5 54.0

100 L 5.0 68.0 4.5 71.0 6.0 69.0 7.0 71.0
15 A 6.0 68.5 6.0 73.0 6.5 70.0 7.0 72.5

D 6.5 71.0 6.0 74.5 7.0 71.0 8.5 74.0

4 y 40 L 7.0 25.5 5.5 28.5 7.0 26.5 8.5 30.5
16 A 7.5 27.0 7.5 31.0 7.0 27.0 10.5 3.0

D 10.0 32.0 9.5 36.5 10.5 33.0 13.7 37.5
60 L 7.5 36.5 7.5 37.0 7.0 35.5 8.0 40.0

17 A 8.0 38.0 8.0 4o0.0 7.0 37.0 8.0 42.5
D 10.0 4.0 10.0 43.5 8.0 41.5 9.5 47.0

100 L 5.0 58.5 4.5 6o.o 5.5 60.0 6.0 63.0
18 A 5.0 59.5 5.o 62.o 6.5 60.0 6.5 63-.5

D 6.0 62.o 5.5 64.0 7.5 62.5 7.5 65.5

Table 6

(Continued)
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